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Abstract

The behavior of uniformly heated plates is considered for the situation where a patch is adhered over a region of
the structure. A variational formulation results in a self-consistent set of equations and conditions, which governs
the response of the system. The nonlinear problems are solved analytically, yielding exact results within the context

of the mathematical model employed. A stability criterion is established for the class of problems considered, based
on the second variation of the potential energy of the composite structure, and issues of stability are assessed in this
context. Three non-dimensional parameters that characterize the response of the structure are identi®ed. These are a
`loading parameter', a `critical temperature' and a `critical membrane force'. Results of numerical simulations are

presented for various loading and support conditions, patch lengths, and mechanical properties of the components.
It is seen that bifurcation buckling, `asymptotic buckling', and `sling-shot buckling' are all possible scenarios for the
class of structures of interest. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many thin structures consist of a primary component to which a secondary component is adhered,

thus forming a `composite structure'. Examples of such structures range from a patch adhered to a

damaged structure to prevent further crack-propagation, to thin ®lms on electronic substrates. In

particular, the use of repair patches on aircraft structures has received increased attention in recent

years. Examples of related work pertaining to patched structures may be found in the papers by

Roderick (1980), Sih and Hong (1989), Baker (1993), Bottega (1995), Bottega and Loia (1996, 1997),

Bottega and Karlsson (1999), and Karlsson and Bottega (1999a, 1999b). Though `patching' may be an
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e�ective way to repair a cracked structure, there are several sources which can eliminate the e�ciency of
the repair, such as debonding of the patch, and complications arising from mismatch of thermal
properties between the patch and the base structure. It was seen in Bottega (1995), Bottega and Loia
(1996, 1997), Bottega and Karlsson (1999) and Karlsson and Bottega (1999a, 1999b) that the debonding
scenario may vary signi®cantly depending upon the boundary conditions, loading conditions and
structural con®gurations. In work done by Naboulsi and Mall (1997) and by Lena et al. (1998), thermal
loading was considered, though the emphasis was on the residual thermal stresses, which are indeed of
major concern. However, a change in temperature may also induce instability of a thin structure, such
as bifurcation buckling, snap-through buckling, or `just' unacceptable large out-of-plane de¯ections of
the structure. To the knowledge of the authors' of the present study, no studies on thermal buckling of
patched structures are found in the open literature. However, investigations have been concerned with
the related problem of thermally induced buckling of laminates, as discussed below.

Thermoelastic buckling of beam-plates and plates has long been of vivid interest to researchers.
Perfectly isotropic beams and plates, which are ®xed from motion in their plane, are found to exhibit
bifurcation buckling at a critical temperature when they are exposed to a homogeneous temperature
®eld (i.e., the plate will remain ¯at during increasing temperature until a critical temperature is reached,
at which point the magnitude of transverse de¯ection becomes indeterminant (see, for example, Boley
(1997)). For the case of an isotropic beam or plate with an imperfection, the structure will not exhibit
bifurcation buckling. Instead, the structure will exhibit a transverse de¯ection immediately upon
subjection to a temperature ®eld, with magnitude and direction depending on the nature of the
imperfection. At elevated temperatures the de¯ections become very large, to the extent that the structure
is, in e�ect, unusable after a certain temperature. In addition, other deformation scenarios are possible
for di�erent degrees of anisotropy of the beam or plate. For certain non-isotropic structures, such as a
bilaminate, the structure may exhibit snap-through buckling (i.e., the structure moves dynamically from
one con®guration to another) when subjected to critical thermal loads. A now classic work regarding
thermally induced snap-through buckling was published by Timoshenko (1925), where the response of a
bilayer strip/beam to thermal loading was examined. Bending and snap-through buckling were found to
occur upon heating to an appropriate level, while snap-back was seen to occur as well when the system
was appropriately cooled. Wahl (1944) examined the `Valverde' thermostat, consisting of three pre-
stressed strips. It was shown that, upon heating, the strips buckle in a snap-through mode. Snap-back
occurred during cooling. In the papers by Wittrick (1953) and Wittrick et al. (1953) the thermoelastic
stability of a shallow bilayered spherical cap was considered. Snap-through behavior was seen to occur
when the temperature was su�ciently increased for certain structures, as well as snap-back when the
temperature was lowered to a critical level. For the structures considered by Timoshenko (1925), Wahl
(1944), Wittrick (1953) and Wittrick et al. (1953) snap-through occurred at higher temperatures than
snap-back.

Since these early studies, a number of investigations have been performed concerning buckling and
post-buckling of laminated structures (beams and plates) under thermal loads. Surveys of such studies
can be found in the reviews by Tauchert (1991) and by Noor and Burton (1992). The former survey is
focused on the structural response of plates due to a range of loading conditions, including temperature
loading, while the latter deals with the response of composite plates in a temperature ®eld, in general,
and includes issues of instability. The discussions by Tauchert (1991) and by Noor and Burton (1992)
will not be repeated herein, but pertinent studies include work done by Huang and Tauchert (1988),
Hamamoto and Hyer (1987), Gauss and Antman (1984), Noor and Peters (1992), and Noor et al.
(1993). Since the surveys by Tauchert (1991) and Noor and Burton (1992), several new studies have
been published, for example Librescu and Souza (1993), Singh et al. (1993), Dano and Hyer (1998), and
Yin (1998). Librescu and Souza (1993) suggest a model to determine the post-buckling behavior of
symmetric laminates with imperfections. Numerical simulations were conducted for selected scenarios
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regarding loading, in-plane boundary conditions and the presence of imperfections. In all cases
considered therein, all four edges of the rectangular plate are simply supported. Several conclusions are
made, and among others, it is suggested that bifurcation buckling does not occur when imperfections
are present, but rather large de¯ections occur after a certain level of the temperature is achieved. Non-
symmetric laminates were considered by Singh et al. (1993) and Dano and Hyer (1998). Plates with
simply supported edges, which prohibit motion within the plane, were treated by Singh et al. (1993). The
results indicate that bifurcation buckling may occur for antisymmetric laminates under some
circumstances. Another interesting and important aspect of thermal buckling was considered by Dano
and Hyer (1998). This study is concerned with the issue of cooling of an initially ¯at unsymmetric
laminate from an elevated temperature (e.g., the laminate is ¯at during curing at elevated temperatures).
During cooling buckling may occur, thus the laminates are in general not ¯at once room temperature is
reached. The deformation path from curing temperature to the ®nal shape of the structure at room
temperature is predicted, and bifurcation buckling is identi®ed during cooling. Snap-through buckling is
observed to occur with the subsequent introduction of a transverse load. Yin (1998) investigated the
thermomechanical buckling of delaminated composite laminates. In that study, the temperature was
allowed to vary arbitrarily through the thickness of the laminate. Modeling the laminate in a one-
dimensional fashion, thus considering a beam-plate, enabled the author to solve the stated problem
analytically. Among the results discussed is how the bifurcation load changes with the size of the
delamination.

In the present study, the response of patched plates subjected to a uniform temperature ®eld is
considered for a variety of thermo-mechanical loading and support conditions. The problems are
approached from a uni®ed point of view within the theory of calculus of variations. An appropriate thin
structure theory is incorporated as the mathematical model for the base structure and the patch
individually. In this way a self-consistent model is obtained for the composite structure for the
particular system under study. The non-linear formulation lends itself to an exact analytical solution.
Due to the non-linearity of the problem, several equilibrium con®gurations may be found for a given
value of the load, hence the stability of the di�erent equilibrium branches of the loading path must be
established. In this regard, a stability criterion is established based on the second variation of the
potential energy of the system. Stability is assessed along each path, in this context. Intricate results of
extensive numerical simulations are presented which elucidate the interesting behavior of the
geometrically discontinuous composite structure. Of particular interest are the e�ects that a mismatch in
the coe�cients of thermal expansion of the base plate and patch have on the overall response of the
heated structure. In addition, the e�ects that the relative sti�nesses and lengths of the patch have on the
behavior of the structure are examined, as are the e�ects of the thickness to length ratios of the base
structure itself.

2. Formulation

Consider a thin ¯at structure comprised of a base panel of normalized half-span L 0 1 to which
a patch of half-span Lp R 1 is perfectly adhered. The region where the patch is present is de®ned as
S1: x $ [0, Lp], as shown in Fig. 1. The coordinate x runs along the upper surface of the base panel and
originates at the centerspan of the structure, as shown. Furthermore, the region ahead of the patch (i.e.,
the region of the composite structure that consists only of the base structure), is de®ned as S2: x $ [Lp, 1].
We shall be interested in examining the response of the `composite structure' comprised of the patch and
base panel when it is subjected to a uniform temperature increase above some reference temperature. In
what follows all length scales are normalized with respect to the dimensional half-span �L of the
undeformed structure and the temperature change, Y, is normalized with respect to the reference
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temperature. The interface between the patch and base panel, and its extension (i.e., the upper surface of
the base panel), will be used as the reference surface.

The problem may be formulated by paralleling the variational development presented by Bottega
(1995), but augmenting the corresponding membrane forces to include the thermal e�ects in the
expression for the membrane energy1. Thus, in the expression for the membrane energy in Bottega
(1995), ei(x ) is replaced by ei(x )ÿaY, and ep(x ) is replaced by ep(x )ÿapY,2 where ei(x ) and ep(x ) are
strains, and a and ap are described in what follows. We remark that since we shall consider the
temperature change, Y, as `prescribed', its variation shall vanish identically.

The corresponding relations for the normalized (centerline) membrane strains ei(x ) and ep(x ), and the
normalized curvature changes ki(x ) and kp(x ), for the base structure and patch in each region are
respectively given by

ei � u 0i �
1

2
w 0i

2, ki � w 00i , x 2 Si, �i � 1, 2�, �1a,b�

ep � u 0p �
1

2
w 0p

2, kp � w 00p , x 2 S1: �1c,d�

where ui=ui(x ) (positive in direction of increasing x ) and wi=wi(x ) (positive downward) respectively
correspond to the in-plane and transverse displacements of the centerline of the base panel in region Si,
and up=up(x ) and wp=wp(x ) correspond to the analogous displacements of the centerline of the patch.
In addition, superposed primes indicate total di�erentiation with respect to x.

The displacements ui(x ) and up(x ) and the membrane strains ei(x ) and ep(x ) of the substructure
centerlines are related to their counterparts at the reference surface, u�i �x� and u�p�x�, and e�i �x� and e�p�x�,
by the relations

u�i �x� � ui�x� � 1

2
hw 0i , �i � 1, 2� �2a�

Fig. 1. Geometry of patched beam-plate.

1 A separate functional for `thermal energies' is not warranted here, as we are considering uniform and isothermal loading only.

In addition, for the present study, all domains are considered ®xed.
2 In Bottega (1995), 3 regions are considered. Region 2 of the present study corresponds to Region 3 of that study, while Region

1 for the present study corresponds to Region 1 of Bottega (1995). Region 2 of Bottega (1995) is not included presently.
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u�p�s� � up�x� ÿ 1

2
hpw

0
p, �2b�

e�i �x� � ei�x� � 1

2
hki, �i � 1, 2� �2c�

e�p�x� � ep�x� ÿ 1

2
hpkp, �2d�

where h<<1 and hp<<1 correspond to the normalized thicknesses of the base panel and patch,
respectively, and we impose the interface conditions

w�1�x� � w1�x� � wp�x�, �x 2 S1�, �3a,b�

k�1�x� � k1�x� � kp�x�, �x 2 S1�, �3c,d�

u�1�x� � u�p�x�, �x 2 S1�: �3e�
At this point, let us also introduce the normalized membrane sti�ness C and bending sti�ness D of

the base panel, and the corresponding normalized membrane and bending sti�nesses, Cp and Dp, of the
patch. The normalization of the sti�nesses of the primitive structures is based on the dimensional
bending sti�ness, �D, and the dimensional half-span, �L, of the base panel in the undeformed
con®guration. Hence,

C � 12

h2
, �4a�

D � 1, �4b�

Cp � CE0h0, �4c�

Dp � E0h
3
0, �4d�

h0 � hp

h
, �4e�

E0 �
�Ep

�E
� plane stress� �4f�

or

E0 �
�Ep=�1ÿ n2p�
�E=�1ÿ n2� � plane strain�, �4f 0�

where �E and �Ep correspond to the dimensional elastic moduli of the base panel and patch respectively,
and n and np correspond to the associated Poisson's ratios. Similarly, the dimensional in-plane edge
load, �T, is related to its non-dimensional counterpart, T0, as
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T0 �
�T �L

2

�D
: �4g�

Likewise, the non-dimensional coe�cients of thermal expansion of the base structure and the patch, a 0

and a0p respectively, are the products of the corresponding dimensional coe�cients and reference
temperature. We correspondingly de®ne, for the present formulation, the augmented coe�cients, a and
ap, such that

a � a0 � plane stress� �4h�
and

ap � a0p, � plane stress� �4i�

or

a � �1� n�a0 � plane strain� �4h 0�
and

ap � �1� np�a0p � plane strain� �4i 0�

We further denote the ratio of coe�cients of thermal expansion as a0, hence

a0 � ap

a
: �4j�

Taking the appropriate variations, and invoking the theorem of Stationary Potential Energy, we
arrive at the governing di�erential equations, boundary and matching conditions, and hence arrive at a
self-consistent set of equations and conditions. We thus have

M�1
00 ÿ ÿN�1w�1 0� 0� 0 and N�1

0 � 0, �x 2 S1�, �5a,b�

M 00
2 ÿ

ÿ
N2w

0
2

� 0� 0 and N 02 � 0 �x 2 S2�, �6a,b�

where

N�1�x� � C �e�1�x� � B�k�1�x� ÿ n�Y � C �
�
e�1�x� ÿ a�Y

�� B�
�
k�1�x� ÿ b�Y

� �7a�

M�1�x� � A�k�1�x� � B�e�1�x� ÿ m�Y � A�
�
k�1�x� ÿ b�Y

�� B�
�
e�1�x� ÿ a�Y

�
� D�

�
k�1�x� ÿ b�Y

�� r�N�1, �7b�

respectively correspond to the normalized membrane force and normalized bending moment in the
patched portion of the composite structure, and

N2�x� � C
�
e2�x� ÿ aY

�
, �8a�

M2�x� � Dk2�x� ÿ 1

2
hN2, �8b�
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correspond to the normalized membrane force and normalized bending moment in the base structure
outside the patched region.

The sti�nesses and thermal coe�cients of the composite structure which occur in Eqs. (7a) and (7b)
are found, in terms of the sti�nesses, thermal coe�cients, and thicknesses of the substructures, as

A� � D�Dp �
�
1

2
h

�2

C�
�
1

2
hp

�2

Cp, B� � 1

2
hpCp ÿ 1

2
hC, �9a,b�

C � � C� Cp, D� � A� ÿ r�B�, �9c,d�

a� � a1 ÿ r�b�, b� � m�

D�
, �9e,f�

where

r� � B�

C �
, m� � 1

2
hpCpap ÿ 1

2
hCa, �9g,h�

n� � Cpap � Ca, m� � m� ÿ r�n�, a1 � n�

C �
: �9i±k�

The quantity r� is seen to give the transverse location of the centroid of the composite structure with
respect to the reference surface, the parameters a� and b� are seen to correspond to the thermal
expansion coe�cients of the composite structure within the patched region and represent the thermally
induced membrane strain at the reference surface and the associated curvature change, respectively, per
unit normalized temperature change for a free unloaded structure. The thermal expansion coe�cient a1
is seen to be the corresponding strain per unit temperature at the centroid of the patched segment of an
unloaded composite structure.

The associated boundary and matching conditions obtained similarly take the following forms:

u�1�0� � 0, w�1
0�0� � 0,

�
M�1
0 ÿN�1w

�
1
0�
x�0� 0, �symmetric deformation� �10a±c�

or

û1�0� � r̂w�1
0�0�, D�k�1�0� � 0, w�1�0� � 0, �antisymmetric deformation� �10a 0±c 0�

and

u�1�Lp� � u�2�Lp�, N�1�Lp� � N2�Lp�, �11a,b�

w�1�Lp� � w2�Lp�, w�1
0�Lp� � w 02�Lp�, �11c,d�

M�1�Lp� �M2�Lp�,
�
M�1
0 ÿN�1w

�
1
0�
x�Lp
� �M 0

2 ÿN2w
0
2

�
x�Lp

, �11e,f�

u2�1� � 0 or N2�1� � T0 �T0 prescribed �, �12a,a 0�
and
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w2�1� � 0 and w 02�1� � 0 or k2�1� � 0, �12b,c,c 0�

where

û1�x� � u�1�x� � r�w�1
0�x� �13a�

is the in-plane de¯ection of the neutral surface of the composite structure in the patched region, and

r̂ � m�
Y
N�1
; �13b�

gives the transverse distance from the centroidal plane to the `e�ective' neutral plane (i.e., the plane with
vanishing moment).

Integration of Eqs. (5b) and (6b), and imposition of the associated matching condition (11b) yields
the results

N�1 � N2 � constant � ÿN0, �14�

where N0> 0 is a (yet to be determined) compressive membrane force.
Finally, integrating the strain±displacement relations and imposing the corresponding boundary and

matching conditions for the in-plane displacements results in the integrability condition given by

u2�1� ÿ û1�0� � ÿN0

�
L�p
C
� Lp

C �

�
� �L�pa� Lpa1

�
Yÿ

�
r� � h

2

�
w 0�Lp� ÿ

X2
i�1

�
Si

1

2
w 0i

2 dx, �15�

where û1�x� is de®ned by Eq. (13a) and L�p � 1ÿ Lp corresponds to the (half) length of the unpatched
segment of the base plate.

The counterparts of Eqs. (5a) and (6a), and the corresponding boundary and matching conditions
obtained upon substitution of the result given by Eq. (14), together with the integrability condition (15)
transform the problem statement into a mixed formulation in terms of the transverse displacement w(x ),
the membrane force N0, and the temperature (change) Y.

Substituting the expressions for the moments in region 1 and 2, given by Eqs. (7b) and (8b), into the
matching condition for the moments over the end of the patch, Eq. (11e), and incorporating Eq. (14),
we ®nd that the condition in question takes the form�

D�k�1 ÿDk2
�
x�Lp
�Ml, �16�

where

Ml � m�Y�
�
r� � 1

2
h

�
N0: �17�

Upon consideration of the governing di�erential equations and the remaining boundary and matching
conditions augmented by the result in Eq. (14), it may be seen that the parameter Ml, and hence the
temperature, appears only at the matching of the moments at the edge of the patch. The parameter Ml

may thus be identi®ed as the `loading parameter' and is seen to represent the total applied loading
acting on the structure. It is thus anticipated that the transverse displacements are proportional to Ml.
In this context, Ml may be interpreted as a moment that is applied at x=Lp, due to the mismatch in
coe�cients of thermal expansion between the patch and the base structure and due to the jump of the
neutral surface.
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In the next section, the analytical solutions to the non-linear problems of interest are discussed for
several support and loading conditions.

3. Analytical solution

In this section, we present analytical solutions for the problems stated in Section 2, for selected
boundary and load conditions. As the geometry and material properties of the system are symmetric
about the center of its span, we will ®rst be concerned with symmetric solutions. However, we shall also
consider the possibility of antisymmetric solutions.

3.1. Symmetric solutions

In this subsection, we present the analytical solution for the non-linear problem presented in Section
2, assuming symmetric deformation. In the case of non-vanishing membrane force, the general solution
for the current problem is delineated according to the type of rotational support conditions and is given
below.

. Hinged end conditions

w�1�x� �
Ml

N0H�h�

�
H�h� �A1 cos�k�x�� �0RxRLp�, �18a�

w2�x� � ÿ Ml

N0H�h�
B0 sin�k�1ÿ x�� �LpRxR1�, �18b�

where

H�h� �H�h��N0; S� �
�������
D�

D

r
cos
ÿ
k�Lp

�
cos
ÿ
kL�p

�ÿ sin
ÿ
k�Lp

�
sin
ÿ
kL�p

�
: �19�

. Clamped end conditions

w�1�x� �
Ml

N0H�c�

�
H�c� �A2 cos�k�x� ÿB0

� �0RxRLp�, �20a�

w2�x� � ÿ Ml

N0H�c�
B0�1ÿ cos�k�1ÿ x���, �LpRxR1�, �20b�

where

H�c� �H�c��N0; S� � sin
ÿ
k�Lp

�
cos
ÿ
kL�p

�� �������
D�

D

r
cos
ÿ
k�Lp

�
sin
ÿ
kL�p

�
, �21�

with
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A1 � ÿ
�������
D�

D

r
cos
ÿ
kL�p

�
, �22a�

A2 � ÿ
�������
D�

D

r
sin
ÿ
kL�p

�
, �22b�

B0 � sin
ÿ
k�Lp

�
, �22c�

k�2 � N0

D�
�22d�

and

k2 � N0

D
: �22e�

In Eqs. (19) and (21), S represents the set of sti�nesses of the structure, and we recall that L�p �
1ÿ Lp: The general solution given in Eqs. (18±22) is valid for N0 > 0 throughout the structure. For the
case of a vanishing membrane force, N0=0, the solution is given by

Hinged end conditions

w�1 �
1

2
b�Y

�
x2 � L2

p ÿ 2Lp

�
�0RxRLp�, �23a�

w2 � ÿb�YLp�1ÿ x� �LpRxR1�, �23b�
Clamped end conditions

w�1 � ÿ
1

2
b�Y

h
�B0 ÿ 1�x2 � LpA0

i
, �0RxRLp�, �24a�

w2 � ÿ1
2
b�Y

D�

D
�1ÿ x�2B0, �LpRxR1�, �24b�

where

A0 �
L�pD

�

L�pD� � LpD
�24c�

and

B0 � LpD

L�pD� � LpD
: �24d�

If, for any of the cases considered above (Eqs. (18±24)), the edges of the base panel are free to
translate in the plane, the corresponding in-plane edge de¯ection may be found upon substitution of the
appropriate solution into the integrability condition (15). For the case where the edges are ®xed with
regard to in-plane motion, Eq. (15) will give the non-trivial relationship between the membrane force
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and the temperature for each of the solutions presented above. For the latter case, the integrability
condition may be solved numerically for the membrane force N0, for a given temperature Y.

Eqs. (18a,b), (20a,b) possess three important quantities, Ml, H(h)(N0; S) and H(c)(N0; S), where the
former is de®ned in Eq. (17) and the latter two in Eqs. (19) and (21), respectively. The signi®cance of
these quantities is discussed below. For ease of presentation, we drop the subscripts associated with the
particular type of rotational edge condition and refer to a generic H(N0; S) in the following discussion.
It may be seen from Eqs. (18a), (18b), (20a) and (20b) that if the pertinent function H(N0; S)
approaches zero, the de¯ections become large, and that when H(N0; S) vanishes, the deformation
becomes singular (i.e., is unde®ned). The membrane force associated with the singular case will be seen
to be associated with a bifurcation in the loading path for the case of controlled edge force loading (free
in-plane edge conditions), and with the onset of `sling-shot buckling' for the case of temperature
controlled loading with ®xed in-plane edge conditions. The equation

H�N0, S� � 0 �25�

may, therefore, be interpreted as the associated `characteristic equation'. A compressive membrane force
satisfying the characteristic equation will be referred to as a `critical membrane force', and will therefore
be denoted as Ncr. There is evidently more than one such membrane force for a given structure. It may
be noted that if we let the length of the patch vanish (Lp 4 0) in Eqs. (19) and (21), Eq. (25) assumes
the forms of the characteristic equations associated with `Euler buckling'. Furthermore, it may be seen
from Eqs. (19) and (21) that Ncr is independent of the temperature and the coe�cients of thermal
expansion.

As was anticipated in Section 2, the solutions of Eqs. (18±24) are seen to be proportional to the
parameter Ml, where Ml, as de®ned by Eq. (17), is proportional to N0 and Y. It is further seen from
these solutions that vanishing load parameter, Ml=0, is associated with vanishing of the transverse
displacement over the entire span of the structure. Hence, the vanishing of the loading parameter is
associated with ¯at con®gurations of the deforming structure. However, it may be seen from Eq. (17)
that Ml vanishes for an appropriate ratio of N0 and Y provided m�Y< 0 for a given structure. Hence,
¯at con®gurations other than those corresponding to the trivial case (N0=Y=0) are possible for
structures for which m�Y is negative de®nite. Therefore, if a structure is supported in such a manner
that the edges of the base plate are free for in-plane motion, a loading program may be constructed in
such a way that the structure remains ¯at throughout the loading sequence. Alternatively, such a
structure may be subjected to temperature controlled loading with N0 ®xed or N0 controlled loading
with Y ®xed, with a ¯at con®guration eventually being realized when the critical ratio of Y and N0 is
achieved. For the situations where the edges of the base plate are ®xed with regard to in-plane motion,
the membrane force and temperature cannot be prescribed independently. Rather, the membrane force,
N0, is a nonlinear function of the temperature, Y, obtained by substitution of the solution for the
transverse displacement, Eqs. (18a) and (18b) or Eqs. (20a) and (20b), into the integrability condition
(15) with u2(1)00. As the condition for uniformly ¯at equilibrium con®gurations, Ml=0, results in a
linear relation between N0 and Y, it is evident that this relation can intercept the transcendental
equation resulting from the integrability condition at a discrete number of points. Hence, when the
support conditions prohibit in-plane translation, a continuous loading path accompanied by uniformly
vanishing transverse de¯ection is not possible.

For the special case when Ml indeed vanishes, we may solve for the corresponding ratio of
temperature and membrane force using Eq. (17). For the particular case where N0=Ncr, the
corresponding temperature Y=Ycr, is given by
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Ycr � ÿ
r� � 1

2
h

m�
Ncr: �26�

It will be seen in Section 5 that this temperature is closely associated with the characterization of the
structural response of the composite system and hence is designated as the `critical temperature'.

Finally, let us consider the case when both the loading parameter, Ml, and the characteristic function,
H(N0; S}, vanish simultaneously. The solution for the transverse de¯ection for this case is

Hinged end conditions

w�1�x� � A0�A1=B0�cos�k�x�, �0RxRLp�, �27a�

w2�x� � ÿA0sin�k�1ÿ x��, �LpRxR1�, �27b�
Clamped end conditions

w�1�x� � A0

�ÿ 1� �A2=B0�cos�k�x��, �0RxRLp�, �28a�

w2�x� � ÿA0�1ÿ cos�k�1ÿ x��� �LpRxR1�, �28b�

where A0 is an arbitrary constant and A1, A2 and B0 are given by Eqs. (22a), (22b) and (22c)
respectively. Thus, the de¯ection is determined to its shape but not to its magnitude for the case where
the edges of the structure are free to translate in-plane. If the in-plane de¯ection of the edges is
prescribed, the integrability condition (15) provides one more condition to be satis®ed. By substituting
Eqs. (27a) and (27b) or Eqs. (28a) and (28b) into Eq. (15), a polynomial of the second degree with
respect to A0 is obtained, and the unknown constant A0 may be determined, for a given temperature Y.
Hence, for the case of Ml=0, H(N0; S)=0 and prescribed in-plane edge de¯ections, the constant A0

may assume two di�erent values. It will be seen in Section 5 that this case corresponds to the onset of
`sling-shot buckling'.

We next examine the existence of antisymmetric solutions for the problem of interest.

3.2. Existence of antisymmetric solutions

The general solutions to the governing di�erential equations (Eqs. (5a) and (6a)), may be expressed as
the sum of two parts: a symmetric part, wS and an antisymmetric part wAS. Thus,

w�x� � wS�x� � wAS�x�: �29�
In Eq. (29), the denotation of the particular region of the structure has been omitted for simplicity.
While the matching conditions for the transverse displacement Eq. (11c), rotation Eq. (11d) and
transverse shear Eq. (11f) are satis®ed passively by the form (29), the condition for moment Eq. (11e)
warrants a detailed discussion.

We recall that the curvature for a plate is given by k=w0, hence if w(x ) is a symmetric (even)
function, then k(x ) is even, and if w(x ) is an antisymmetric (odd) function, then k(x ) is also odd3.

3 It may be easily shown that, for a function with su�cient number of non-vanishing derivatives, the derivative of an odd func-

tion is even, and vice versa, hence the second derivative of an odd function is odd and the second derivative of an even function is

even.
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Hence, when separating the solution into symmetric and antisymmetric parts, Eq. (16) may be written as

D�k�1S
�Lp� ÿDk2S �Lp� �MlS

�30a�

and

D�k�1AS
�Lp� ÿDk2AS

�Lp� �MlAS
, �30b�

where MlS
and MlAS

denote the loading parameters for the symmetric problem and for the
antisymmetric problem, respectively. Since the geometry and sti�nesses of the system are symmetric, and
since N0 and Y are both uniform, the loading parameter, Ml � MlS

� MlAS
, may be seen to be

symmetric as well. Hence, Ml �MlS
and MlAS

vanishes. The matching condition for the moment at
x=Lp for the antisymmetric case, thus becomes

D�k�1AS
�Lp� ÿDk2AS

�Lp� � 0: �30b 0�

From Eq. (30b '), it follows that only two types of antisymmetric solutions are possible for the current
problem: the trivial solution, where there is no transverse displacement (w00), and non-trivial solutions
for which N0 � NcrAS

(where NcrAS
is de®ned in a manner similar to that de®ned for the symmetric case).

Paralleling the discussion regarding vanishing transverse displacements for the symmetric case, it follows
that w(x )=0, 8x $ [0, 1], for the antisymmetric case can exist for non-vanishing temperature and/or
membrane force only when the edges of the base plate are free to allow in-plane motion. Thus, it may
be seen that a loading program may be prescribed such that the ratio of compressive force to
temperature satis®es Eq. (30b '). With this ratio of N0 to Y, the structure will remain ¯at as the load
progresses, until the critical compressive force NcrAS

is reached. At this point, it is anticipated that the
structure will buckle in an antisymmetric mode. As discussed in the preceding section, for the case where
the edges are ®xed so as to prohibit motion in the plane, there exist only discrete combinations of N0

and Y, given by the integrability condition. Thus, the above mentioned loading scenario is not possible
if the edges are `®xed'. However, it may be noted from Eq. (29) that an antisymmetric solution may be
superposed on a symmetric solution, which implies that it is possible for a symmetrically deformed
structure to buckle in an antisymmetric manner, once the critical load NcrAS

is reached.
The critical load, NcrAS

, may be found from the `characteristic equation' for antisymmetric solutions,

HAS�N0; S� � 0, �31�

where HAS(N0; S) is dependent on the support conditions as follows:

Hinged end conditions

HAS �H�h��N0; S� � sin
ÿ
k�Lp

�
cos
ÿ
kL�p

�� �������
D

D�

r
cos
ÿ
k�Lp

�
sin
ÿ
kL�p

�
, �32�

Clamped end conditions

HAS �H�c��N0; S�

� �sin
ÿ
kL�p

�ÿ k cos
ÿ
kL�p

�� �������
D

D�

r
cos
ÿ
k�Lp

�� �k sin
ÿ
kL�p

�� cos
ÿ
kL�p

��
sin
ÿ
k�Lp

�
:

�33�

Since the non-linearity of the problem may result in multiple solutions (i.e., multiple equilibrium
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con®gurations for a given value of the loading parameter) stability of the equilibrium con®gurations
must be addressed. This is done in the next section.

4. Stability criterion

It was seen in prior sections that multiple equilibrium con®gurations of the structure are possible for
a given value of the loading parameter. It is therefore of interest to determine which of the
con®gurations are stable and which are unstable. In this regard, stability will be assessed by examination
of the second variation of the potential energy of the system, P. A particular equilibrium con®guration
will be considered stable if d 2P (where d corresponds to the variational operator) is positive de®nite for
that state in the context of perturbations away from it (see, for example, Simitses, 1986). Thus, if

d2P > 0, �34�
the con®guration will be said to be stable. If not, it will be considered unstable. For the system under
consideration, the second variation takes the form

d2P �
�
S1

1

2
D�
ÿ
dw�1

00�2dx�
�
S1

1

2

�
ÿN0

ÿ
dw�1

0�2� 1

C �
�dN0�2

�
dx�

�
S2

1

2
D�dw�2 00 �2 dx

�
�
S2

1

2

�
ÿN0

ÿ
dw 02

�2� 1

C
�dN0�2

�
dx, �35�

where the temperature is assumed to be prescribed.
We will perturb the system away from its equilibrium con®guration by applying a small moment

about an axis through the reference surface at the edge of the patch, x=Lp. (One might imagine a
screwdriver applied to an embedded and perfectly bonded screw at the point in question). If it can be
concluded that the system returns to the equilibrium state in question upon release of the moment, the
con®guration associated with this state will be considered stable. If it moves away from this state it will
be considered unstable. Mathematically, such a moment manifests itself as a variation of the loading
parameter, Ml (i.e., as dMl) in the amplitude of the solution for the transverse displacement given by
Eqs. (18a), (18b), (20a) and (20b). The second variation of the potential energy is evaluated by
substituting the corresponding variation of the transverse de¯ection (the `perturbed' response) into Eq.
(35). Stability of a given con®guration may then be assessed by evaluating the resulting expression at a
given state of equilibrium, and applying the criterion expressed by Eq. (34). This may be done for any
range of points on any equilibrium path.

After performing the substitution described above, Eq. (35) takes the form

d2P � F
N0
�dMl�2 � z�dN �2, �36�

where

F � 1

4

�
f 2

Ak� sin 2k�Lp � f 2
Bk sin 2kL�p

�
�37�

z � 1

2

�
Lp

C �
� L�p

C

�
, �38�
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with

fA � A1

H�h�
, fB � B0

H�h�
�hinged end conditions�, �39a,b�

or

fA � A2

H�c�
, fB � B0

H�c�
�clamped end conditions�, �40a�

A1, A2 and B0 de®ned by Eqs. (22a), (22b) and (22c), and H(h) and H(c) de®ned by Eqs. (19) and (21)
respectively. To establish if Eq. (36) is positive de®nite, we write the expression in canonical form and
use Sylvester's criterion (see, for example, Gelfand and Fomin, 1963). In doing so, we thus require that�������

F
N0

0

0 z

������� > 0 and
F
N0

> 0 �41�

for a stable equilibrium con®guration. Since it may be readily seen that z > 0 and since the solution
corresponds to N0> 0, the requirement for stability is simply that F must be positive de®nite, i.e.,

an equilibrium configuration is stable if F > 0, �42�
where F is given by Eq. (37).

With the analytical solution and stability criterion established, we next present results of numerical
simulations which elucidate the structural behavior of the patched plate.

5. Results and discussion

In this section, results are presented for patched plates subjected to a uniform applied temperature
®eld, Y > 0, under various loading scenarios and support conditions. With regard to the latter, we
consider plates where the edges are either hinged or clamped with regard to rotations and are either free
or ®xed with regard to in-plane translation. In each case the analytical solutions based on the non-linear
formulation presented earlier are employed. For the case where the edges are free to allow in-plane
motion, we consider an in-plane compressive force applied at the edge of the structure and examine the
behavior of the composite structure for a range of loading situations. For the case where the edges are
®xed so as to prohibit in-plane motion we examine the temperature controlled behavior of the
composite structure.

Detailed results for representative patched plates, which elucidate the characteristic behavior of
structures of the class of interest, are presented and discussed in Section 5.1. These results are extended
to a broad range of structures in Section 5.2 by examining the behavior of the characteristic parameters
Ncr and Ycr for a wide range of structural properties. To fully investigate the behavior of the patched
plate under loading, we consider various normalized lengths of the patch, Lp, as well as various ratios of
the coe�cients of the thermal expansion, a0.

5.1. Loading scenarios

We next present selected results for various load cases for a range of structures. For brevity, we limit
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our discussion to the representative cases where the ratio of thermal expansion coe�cients is a0=1/2, 1
and 2. We likewise restrict the current discussion to the representative case of patches of length Lp=0.8,
modulus ratio E0=1 and thicknesses hp=h = 0.05. Similar results are found when the structural and
thermal parameters are varied, but are omitted for brevity.

5.1.1. Edges free to translate in-plane
In this subsection, we consider the case where the edges are free to allow in-plane de¯ections. For this

case, we will be concerned with three types of loading scenarios:

(i) a plate subjected to a constant temperature ®eld and a controlled in-plane edge force,
(ii) a plate subjected to a controlled in-plane edge force and a controlled uniform (positive)
temperature such that the loading parameter maintains a constant value, and
(iii) a plate subjected to a constant in-plane edge force and a controlled uniform (positive)
temperature ®eld.

5.1.1.1. Edge force controlled loading in a ®xed temperature ®eld. We consider the case where the plate is
loaded with a compressive edge force under a constant positive temperature ®eld. The normalized com-
pressive membrane force, N0, is displayed as a function of the in-plane edge-de¯ection, uL0u2(1), for
hinged and clamped edge conditions in Fig. 2 and 3, respectively, for a range of temperatures. (We recall
that `temperature' in this context corresponds to the normalized temperature change above a reference,
as de®ned in Section 2). In Fig. 2(a) and Fig. 3(a), the load paths are displayed for a0=1/2, in Fig. 2(b)
and Fig. 3(b) for a0=1, and in Fig. 2(c) and Fig. 3(c) for a0=2. For each case, it may be seen upon fol-
lowing an isotherm, that for vanishing membrane force, there will be an initial in-plane deformation
which is positive (extensive), uL > 0. This corresponds to the deformation due to thermal e�ects alone.
When a compressive in-plane force is applied, uL is seen to decrease, eventually achieving negative
de¯ection as the magnitude of the force is increased. When a certain level of the membrane force is
approached, the de¯ection is seen to increase in a relatively rapid fashion with increasing force, with the
force evidently approaching a limiting value. The `limiting force' may be seen to be independent of Y
and a0 and is found to have the numerical values of N0=17.8 for hinged support conditions and
N0=36.3 for clamped support conditions. The high rate of deformation may be interpreted as buckling
of the structure, and the `limiting force' as a buckling load. We shall refer to this type of behavior as
`asymptotic buckling'. The `limiting force', observed in Figs. 2 and 3, is seen to coincide with the critical
membrane force discussed in Section 3. It may be seen in Fig. 2 and 3 that a second `limiting force' may
be found at Ncr=81.3 and 194.6, respectively, which corresponds to the second critical membrane force.
However, it will be seen next that under edge force controlled loading, membrane forces higher than the
lowest critical force may not be reached in the case of kinematically free boundaries4. The critical mem-
brane force as de®ned by Eq. (25) is thus seen to correspond to a buckling load of the structure under
force controlled edge loading as suggested in Section 3.

Consider next the corresponding transverse centerspan de¯ections. As indicated for the associated in-
plane de¯ections, the general qualitative behavior is independent of the manner in which the edges are
supported with regard to rotations. Hence, we limit our discussion to the case of clamped edges, for
brevity. In Fig. 4(a,b), the compressive membrane force, N0, is displayed as a function of the center-
span de¯ection w0 � w�1�0� for a range of temperatures, for the ratio of thermal expansion coe�cients
a0=1/2 and 2, respectively. We recall that the critical membrane force for this case is Ncr=36.3.

4 Unless the system is arti®cially constrained until the ®rst Ncr is surpassed.
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Fig. 2. Normalized compressive membrane force, N0, vs. normalized in-plane edge displacement, uL, for various values of the nor-

malized temperatures, Y; (a) a0=1/2, (b) a0=1, (c) a0=2. (Hinged supports, Lp=0.8, E0=1).
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Consider now the case of a0=1/2 [Fig. 4(a)]. For a vanishing membrane force, it may be seen that the
centerspan has an initial positive de¯ection (downwards), corresponding to the temperature e�ects alone.
When the edges of the plate are subsequently loaded with a compressive in-plane force it may be seen
that as the membrane force increases the centerspan de¯ection changes ®rst moderately, but as the value
of the edge load approaches Ncr the de¯ection becomes large and the structure in e�ect buckles
(`asymptotic buckling'), as may be anticipated from the discussion concerning the in-plane de¯ection.
However, the sense of the centerspan de¯ection, as Ncr is approached, is seen to depend on the
magnitude of the temperature. It may be seen that if the temperature ®eld is less than a certain value of
the temperature, in this case Y<7.57, the centerspan will de¯ect upward (negative values) and for Y>
7.57, the centerspan will de¯ect downwards. When Y 1 7.57, the centerspan de¯ection will change very
little until the critical membrane force is reached. At this point, the de¯ection becomes undetermined,
within the context of the present mathematical model, and bifurcation buckling occurs. We may recall
that in Section 3, a `critical temperature', Ycr, was introduced in Eq. (26). For the structure under
consideration, and with a0=1/2, it may be seen that the critical temperature is given by Ycr=7.57. Thus,
it may be concluded5 that the critical temperature divides the structural behavior between upward and
downward de¯ection changes. It may further be noted that the membrane force may never exceed the
critical membrane force in the loading scenario described.

It was shown in Section 3 that for structures where a0 r 1 (i.e. m� r 0)6, a (positive) critical

Fig. 2 (continued)

5 Similar results are found for a variety of combinations of relative patch lengths and ratios of coe�cients of thermal expansion.

Likewise, similar behavior is observed for structures with hinged edges. Such results are omitted for brevity.
6 It follows from Eqs. 9a±k, and (4j) that if a0=1 then m�=0, if a0< 1, then m�<0 and if a0> 1, then m�>0.
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Fig. 3. Normalized compressive membrane force, N0, vs. normalized in-plane edge displacement, uL, for various values of the nor-

malized temperatures, Y; (a) a0=1/2, (b) a0=1, (c) a0=2. (Clamped supports, Lp=0.8, E0=1).

A.M. Karlsson, W.J. Bottega / International Journal of Solids and Structures 37 (2000) 4655±4690 4673



temperature does not exist. We recall that for such cases, the load parameter will only vanish for the
trivial case (N0=0, Y=0). In the limiting case, where a0=1 (m�=0), it may be seen from Eq. (17) that
the load parameter depends on the membrane force alone. Thus, for this case, the transverse de¯ection
of the plate is independent of the temperature and it may be easily veri®ed that the plate de¯ects
upwards as the in-plane edge load is applied. Upon consideration of Fig. 4(b), which displays the
membrane force as a function of the transverse centerspan de¯ection for a range of temperatures for
a0=2, it may be seen that the structure de¯ects upwards for all load combinations.

The fact that the transverse de¯ection is negative for Y < Ycr (for large enough N0) and positive
otherwise, in the case of a0 < 1, may be explained in the following manner. Consider a patch that has a
coe�cient of thermal expansion less than that of the base structure (i.e., a0 < 1). If the structure is
subjected to a temperature ®eld alone (vanishing membrane force), the mismatch in thermal expansion
coe�cients leads to downward de¯ections of the plate (i.e., w positive). This is supported by Fig. 4(a)
(a0=1/2), when N0=0. However, when the plate is loaded with only a compressive membrane force
(vanishing temperature), the plate will tend to de¯ect upward (w negative). This again is supported by
Fig. 4(a), for the isotherm Y=0. When the plate is loaded with a combination of membrane force and
temperature, the tendency for the temperature to induce positive de¯ection `competes' with the tendency
for the membrane force to induce negative de¯ection. When Y < Ycr, the membrane force is seen to
prevail, and hence it governs the direction of the transverse de¯ection. For Y > Ycr, the opposite is
true. In the case of a vanishing load parameter (Ml=0), the de¯ections associated with temperature and
those associated with the membrane force cancel one another, producing vanishing transverse
displacement. For the structures that do not possess a positive critical temperature, (a0 r 1), the
de¯ections associated with temperature and with membrane force reinforce each other and hence induce
de¯ections in the same direction.

Fig. 3 (continued)
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5.1.1.2. Edge force controlled loading with ®xed loading parameters. Let us consider the case where the
temperature, Y, and membrane force, N0, are controlled in such a manner that the loading parameters,
Ml, will remain constant. In particular, if N0 is increased monotonically, the value of Y, or more gener-
ally the value of m�Y, required to maintain Ml at a constant value may be determined by Eq. (17). In
Fig. 5, the membrane force, N0, is displayed as a function of the centerspan de¯ection, w0, for various
values of the load parameter, Ml. The path corresponding to the case of m�Y=0 is also displayed.
Depending on the value of m�, Fig. 5 may be interpreted as described in the following.

If the composite structure under consideration corresponds to one where m�< 0 (a0 < 1) then all load

Fig. 4. Normalized compressive membrane force, N0, vs. normalized transverse centerspan displacement, w0, for various values of

the normalized temperatures, Y; (a) a0=1/2, (b) a0=2. (Clamped-Free supports, Lp=0.8, E0=1).
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paths, or portions of load paths, that are located above and to the right of m�Y=0 correspond to positive
temperatures. The load paths below and to the left of m�Y=0 correspond to negative temperatures, and
are thus not considered in this study. Obviously, in this case, the curve m�Y=0 must correspond to
Y=0. If, instead, the composite structure corresponds to one where m�>0 (a0 > 1) the opposite is true;
paths corresponding to positive temperatures are situated below and to the left of the curve m�Y=0 (i.e.,
Y=0). For the case when the patch has the same coe�cient of thermal expansion as the base structure
(m�=0 and, equivalently, a0=1) the curve m�Y=0 corresponds to m�=0. Thus, for this case, the
transverse displacement as a function of increasing membrane force is given by the curve m�Y=0 and it
may be seen that a constant value of the loading parameter cannot yield permissible solutions for this case.

With the above described interpretations of Fig. 5 in mind, we may consider the general behavior as
characterized by the centerspan de¯ections, w0, for a constant loading parameter, Ml, and a
monotonically increasing membrane force, N0. From Fig. 5, it may be seen that the case of vanishing
loading parameter corresponds to a uniformly vanishing de¯ection, as was anticipated in Section 3. For
this case, the critical membrane force, Ncr, corresponds to a bifurcation point. Thus once the critical
membrane force is achieved, bifurcation buckling occurs. For non-vanishing loading parameters, it may
be seen that Ml < 0 corresponds to upward de¯ections of the structure, while Ml > 0 corresponds to
downward de¯ections. For either case, the de¯ections become large as the critical membrane force is
approached so that the structure, in e�ect, buckles (`asymptotic buckling') and Ncr is never exceeded.
Furthermore, it may be noted that the magnitude of the centerspan de¯ection is symmetric with respect
to the loading parameter [i.e., |w0(ÿMl)|=|w0(Ml)|]. Comparing the present results to the classical
results for (unpatched) beam-plates, it may be seen that the magnitude of Ml describes how far the
structure is from being `perfect', with Ml=0 corresponding to a `perfect' structure.

5.1.1.3. Temperature controlled loading. We next consider the case where the plate is subjected to a con-
stant in-plane edge force and loaded with a uniformly changing temperature ®eld. Fig. 6(a±c) display the
temperature, Y, as a function of the centerspan de¯ection, w0, for a range of values of the normalized

Fig. 5. Normalized compressive membrane force, N0, vs. normalized transverse centerspan displacement, w0, for various values of

the loading parameter, Ml. (Clamped-Free supports, Lp=0.8, E0=1).
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compressive membrane force, N0, for the ratios of thermal expansion coe�cients a0=1/2, 1 and 2, re-
spectively. For the case of a0=1/2, displayed in Fig. 6(a), it may be seen that for a plate at its reference
temperature (Y=0), the centerspan de¯ection is negative (the plate de¯ects upwards). As the tempera-
ture is increased, the de¯ection eventually becomes positive (downward de¯ection)7. For the case of
a0=1, it may be seen in Fig. 6(b) that the centerspan de¯ection is always negative and is independent of

Fig. 6. Normalized temperature, Y, vs. normalized transverse displacement, w0, for various values of the normalized membrane

force, N0; (a) a0=1/2, (b) a0=1, (c) a0=2. (Clamped-Free supports, Lp=0.8, E0=1).

7 In Fig. 6(a), (a0=1/2), all paths appear to cross each other at the critical temperature within the resolution of the ®gure. This is

not actually the case, as would be seen upon magni®cation in the vicinity of the apparent crossing. Though they appear close, the

de¯ections at Y=Ycr are not independent of the membrane force.
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the temperature, as expected. The response related to a structure where a0=2, is displayed in Fig. 6(c).
It may be seen that the centerspan de¯ects upwards, for all applied in-plane edge forces, and increases in
magnitude as the temperature increases. In Fig. 6(a,c), it may be seen that the closer the constant mem-
brane force is to the critical membrane force, Ncr=36.3, the steeper is the slope of the equilibrium path.

5.1.2. Edges ®xed against in-plane translation
We next consider the case where the edges are ®xed so as to prohibit in-plane translation and consider

temperature controlled loading. We recall that for this case only discrete combinations of membrane
forces and temperatures correspond to equilibrium con®gurations of the structure. Speci®cally, the
membrane force, N0, is solved numerically as roots to the integrability condition (15), with u2(1)=0 for
each given temperature Y. We may recall that the in-plane displacements are given in Figs. 2 and 3 for
the case of hinged and clamped supports, respectively. For a given temperature the corresponding
membrane forces are found where the appropriate isotherm intercepts uL=0. It may also be noted that
there may be multiple membrane forces corresponding to a particular temperature, i.e., there will be
more than one possible equilibrium con®guration. The issue of which equilibrium con®guration the
structure will `prefer' will be discussed shortly. In the following, we limit our discussion to the case of
the edges being clamped so as to prohibit rotation. The case of hinged supports, so as to allow edge
rotations, shows the same general behavior. Hence, the corresponding results are omitted for brevity.

For the case of clamped edges, it may be seen from Fig. 3 that, for the range of temperatures
considered, either one or three equilibrium con®gurations are possible for a given temperature8. In
Fig. 7, the associated equilibrium branches are displayed in terms of the thermal and mechanical
`components' of the load parameter, Ml, and the corresponding generalized de¯ection c=w '(Lp) (the
rotation at the edge of the patch). Fig. 7(a±c) correspond to a0=1/2, 1 and 2, respectively. In each case,
the branches are numbered 1, 2, and 3, as indicated in the ®gures. Branch 1 is associated with the
equilibrium path achieved immediately upon loading from the trivial state, branches 2 and 3 are
maintained for higher temperatures, where branch number 3 corresponds to the one with highest
membrane force. Branches 2 and 3 may be seen to be connected, but we will treat them as separate
branches for clarity. It may be noted that for the case of a0=1 (m�=0), all the branches are located in
the plane formed by c and (r�+h/2)N0.

As more than one equilibrium con®guration is possible for a given temperature, it is necessary to
establish the stability of each. It may be recalled that according to the criterion set forth in Section 4, an
equilibrium con®guration is stable if F > 0, where F is de®ned by Eq. (37). The function F is
displayed for each branch as a function of the temperature, Y, in Fig. 8(a±c), for a0=1/2, 1 and 2,
respectively. Consider ®rst the case of a0=1/2, as displayed in Fig. 8(a). It may be seen that, starting at
the reference temperature (Y=0), only the ®rst branch is present and F is positive for increasing
temperatures for this branch until the critical temperature is reached, at which point, F becomes
negative. In the case of the second branch, it may be seen that F is negative for temperatures less than
the critical temperature, and positive otherwise. Hence, the ®rst branch is stable for temperatures less
than the critical temperature and the second branch is stable for temperatures higher than the critical
temperature. For other temperatures the branches in question are unstable. The third branch may be
seen to be unstable for lower temperatures and stable for higher temperatures, where the switch from
unstable to stable is not related to the critical temperature. For the cases when a0=1 and 2, which are
displayed in Fig. 8(b,c), respectively, it may be seen that the ®rst branch is always stable, the second
branch is always unstable, and the third branch is unstable for lower temperatures and becomes stable
for higher temperatures. In Fig. 9(a±c), the total energy, P, is displayed, and it may be seen that the

8 Additional con®gurations associated with temperatures outside the considered temperature range are possible.
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energy is always highest for the third branch, for all a0. Hence, even within the range where this branch
is stable, it is not likely that the associated con®gurations may be achieved.

With the stability of the equilibrium con®gurations associated with the various branches established,
we now consider the response of the structures of interest during temperature controlled loading. In this
context, it is expedient to express the equilibrium paths in terms of the temperature, membrane force
and transverse centerspan de¯ection explicitly. In Fig. 10(a±c), the temperature is displayed as a
function of the centerspan de¯ection, w0, for a0=1/2, 1 and 2, respectively. Consider ®rst the case of
a0=1/2, as displayed in Fig. 10(a). It may be seen from the ®gure that the ®rst branch corresponds to
negative de¯ections (upward), while the second and the third branch both correspond to positive
de¯ection (downward). Let us consider a loading scenario for the case where the structure is initially at
its reference temperature (Y=0) and a monotonically increasing temperature ®eld is subsequently
applied. The equilibrium path starts by following the ®rst branch. As Y is increased, the magnitude of
the de¯ection increases through negative values (becoming increasingly more negative). We may recall
that at the point where the critical temperature is achieved the ®rst branch becomes unstable while the
second branch becomes stable. Hence, when the surrounding temperature becomes equal to the critical

Fig. 7. The ®rst three branches of the equilibrium paths (Clamped-®xed supports, Lp=0.8, E0=1) displayed in terms of the `com-

ponents' of the load parameter, Ml, and the corresponding generalized displacement c=w '(Lp); (a) a0=1/2, (b) a0=1, (c) a0=2.

(Dashed lines correspond to unstable con®gurations).
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Fig. 8. The stability parameter F vs. the normalized temperature, Y, for the ®rst three branches of the equilibrium paths

(Clamped-®xed supports, Lp=0.8, E0=1); (a) a0=1/2, (b) a0=1, (c) a0=2.
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Fig. 9. The total potential energy, P, vs. the normalized temperature, Y, for the ®rst three branches of the equilibrium paths

(Clamped-®xed supports, Lp=0.8, E0=1); (a) a0=1/2, (b) a0=1, (c) a0=2. (Dashed lines correspond to unstable con®gurations).
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Fig. 10. The normalized temperature, Y, vs. the normalized transverse displacement, w0, for the ®rst three branches of the equili-

brium paths (Clamped-®xed supports, Lp=0.8, E0=1); (a) a0=1/2, (b) a0=1, (c) a0=2. (Dashed lines correspond to unstable con-

®gurations).
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temperature, the transverse de¯ection of the plate jumps from being negative (de¯ected upwards) to
being positive (de¯ected downwards). We shall refer to this behavior as `sling-shot buckling' of the
plate9. Once the plate has buckled, it continues to de¯ect downwards with increasing magnitude for
increasing temperatures, within the range of temperatures displayed. We next consider the case of
unloading, with the following scenario observed: at elevated temperatures (Y>Ycr), the plate will be in
a con®guration corresponding to the second branch and thus be de¯ected downwards. Upon cooling,
the plate will `sling-shot' from a downward to an upward de¯ection, once the critical temperature has
been achieved. From this point the centerspan de¯ection will follow the ®rst branch, down to the
reference temperature (Y=0). Thus, `sling-shot buckling' will occur at Ycr, regardless of whether the
critical temperature is reached through increasing or decreasing of the surrounding temperature. For a
structure that does not possess a critical positive temperature, such as a0=1 and 2, as shown in
Fig. 10(b,c), it may be seen that the centerspan de¯ection will be negative (upwards) for all temperatures
studied. Hence, `sling-shot buckling' does not occur. The behavior just described may be explained in a
manner similar to that for the case where the edges of the plate were free for in-plane translations. For
this case it was seen that the e�ects due to temperature and mismatch in coe�cients of thermal
expansion `compete' with (for a<1) or reinforce (for ar1) e�ects due to the membrane force.

In Fig. 11(a±c), corresponding to a0=1/2, 1 and 2, respectively, the membrane force, N0, is displayed
as a function of the temperature, Y, for the three branches of equilibrium con®gurations. Let us ®rst
consider the case of a0=1/2 [Fig. 11(a)]. It may be seen that at the critical temperature, Ycr, the ®rst
and the second branch correspond to the same membrane force, which is equal to the critical membrane
force, Ncr. Thus this corresponds to the special case of Ml=H=0, as was discussed in Section 3.1.
Furthermore, it may be seen that the membrane force will always be less than Ncr for the stable
solutions. For the cases of a0=1 and 2, Fig. 11(b,c), respectively, it may be seen that the second branch
always corresponds to a higher membrane force than the ®rst branch, for a given temperature, and that
the membrane force of the ®rst branch never exceeds Ncr.

5.1.3. Synopsis
The numerical simulations presented above have demonstrated that the critical temperature and the

critical membrane force are of great importance to the structural behavior of a patched plate. The
critical temperature is related to the existence of bifurcation for the case of an edge-loaded plate with
translationally free edges in a constant temperature ®eld or with a constant loading parameter, and to
`sling-shot buckling' for a temperature controlled loaded plate with ®xed edges. Furthermore, the critical
membrane force is seen to correspond to the structure's `buckling load'. In the case of in-plane force
controlled loading, the membrane force is seen to generally approach, but never exceed the critical
membrane force (`asymptotic buckling'), and in the case of `sling-shot buckling' during temperature
controlled loading, the membrane force equals Ncr when `sling-shot buckling' occurs. The qualitative
behavior seen for the particular structural parameters considered in this section are characteristic of all
structures of this class, within the context of the formulation presented in Section 2. For other patch
lengths, structural sti�nesses, and dimensional lengths, variation in critical behavior may be
characterized by examination of corresponding variations of the critical temperature and critical
membrane force. The behavior of these parameters for various structures is discussed in the next
subsection.

9 We distinguish `sling-shot buckling' from conventional snap-through buckling since the instability does not occur at a limit load

and since the de¯ection direction is reversed during this process.
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Fig. 11. The normalized (compressive) membrane force, N0, vs. the normalized temperature, Y, for the ®rst three branches of the

equilibrium paths (Clamped-®xed supports, Lp=0.8, E0=1); (a) a0=1/2, (b) a0=1, (c) a0=2. (Dashed lines correspond to unstable

con®gurations).
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5.2. Critical parameters

In this subsection, the behavior of the two parameters that have been shown above to be of critical
importance for the structural response of the patched plate, the critical membrane force, Ncr, and the
critical temperature, Ycr, is examined. Both symmetric and antisymmetric deformation is discussed. In
particular, the critical force, Ncr, and the critical temperature, Ycr, are presented as functions of the
structural properties of the patched plate. These properties include the relative length of the patch, the
normalized thickness of the base plate, and the sti�nesses of the composite structure. In each case, the
thickness ratio is maintained at unity (hp=h ). In order to vary the relative sti�ness of the patch, several
orders of magnitude of the modulus ratio, E0, are considered. In this way, the behavior of a broad
range of structures is characterized.

We ®rst consider the critical membrane force, the roots of Eq. (25), for symmetric deformations. In
Fig. 12, the lowest critical membrane force, Ncr, is displayed as a function of the patch length, Lp, for
the modulus ratios E0=0.1, 1, 10, and thickness h =0.05. Results for hinged supports are shown in

Fig. 12. The ®rst critical membrane force, Ncr, for symmetric deformation vs. patch length, Lp, for E0=0.1, 1, 10; (a) Hinged sup-

port conditions, (b) Clamped support conditions.
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Fig. 12(a), while those corresponding to clamped supports, are displayed Fig. 12(b). It may be seen from
these ®gures that the critical membrane force is always larger for the case of clamped supports, and for
very long patches (Lp > 0.95), the critical membrane force increases signi®cantly over Ncr for the hinged
case. (We note that the critical normalized membrane force, Ncr, is independent of the length of the base
plate. It is however related to its dimensional counterpart as in Eq. (4g))

The critical temperature, Ycr, given by Eq. (26), corresponding to the lowest critical membrane force
for symmetric deformation is displayed as a function of a0 for a0 < 1 in Fig. 13 and 14, for hinged and
clamped edge conditions respectively. In Fig. 13(a) and Fig. 14(a), results are shown for various values
of the modulus ratio, E0, for h =0.05. We recall that when a0 > 1, no critical temperature exists. It may
be seen that for a given a0, the critical temperature, Ycr, increases with increasing sti�ness and appears
to be asymptotic to the line a0=1. Fig. 13(b) and Fig. 14(b) display Ycr for a range of patch lengths,
and it may be seen that Ycr increases with increasing patch lengths. In Fig. 13(c) and Fig. 14(c), Ycr is
shown for various values of h, where href=0.05. It may be seen from these ®gures that as h increases,
the critical temperature increases.

Finally, consider the characteristic parameters associated with antisymmetric deformations. The
critical membrane force for this case, NcrAS

, is given as the roots of Eq. (31), and the critical
temperature, Ycr, is again given by Eq. (26). In Fig. 15(a), the ®rst critical membrane force for both
symmetric and antisymmetric deformations is displayed, as a function of the patch length, Lp. Fig. 15(b)
shows the critical temperature corresponding to the ®rst critical membrane force for both symmetric and
antisymmetric deformations as a function of the ratio of the coe�cients of thermal expansion a0. Both
hinged and clamped supports are considered. It may be seen that in all cases, the antisymmetric modes
yield signi®cantly higher values of the critical membrane force than do their symmetric counterparts.
Thus, if the structure is loaded from the trivial state the antisymmetric load cannot be achieved10.

6. Concluding Remarks

Thermal buckling of heated patched beam-plates has been investigated. The response of the composite
system to a uniform temperature ®eld in combination with a membrane load was described through a
self-consistent formulation, yielding a mathematical model of the system in terms of an assemblage of
the base structure and the patch. The non-linear problem arising from this formulation was solved
analytically, thus results are exact within the context of the formulation. Due to the non-linear nature of
the problem, multiple equilibrium con®gurations are possible and stability of the di�erent equilibrium
con®gurations is an issue. In this regard, a stability criterion was established based on the second
variation of the energy potential for the system. Stability of the equilibrium paths was assessed in this
context. Various loading and boundary supports were considered.

Several non-dimensional parameters were identi®ed. A loading parameter was determined, consisting
of a linear combination of the normalized membrane force and the normalized temperature. All
transverse de¯ections were seen to be proportional to the loading parameter, thus vanishing loading
parameter was seen to correspond to ¯at con®gurations of the structure. It follows that it is possible to
®nd a loading sequence where the membrane force and temperature is controlled in a manner so that
the structure remains ¯at during increasing temperature for structures where the patch has a lower
coe�cient of thermal expansion than that of the base plate. Furthermore, two characteristic parameters
for the structure were identi®ed, a critical temperature and a critical membrane force. They were seen to
characterize the response of the structure.

10 Unless the system is arti®cially constrained until the lower Ncr is surpassed.

A.M. Karlsson, W.J. Bottega / International Journal of Solids and Structures 37 (2000) 4655±46904686



Fig. 13. The critical temperature, Ycr, corresponding to the ®rst critical membrane force for symmetric deformation vs. the ratio of

coe�cients of thermal expansion, a0, for Hinged supports; (a) Various relative sti�nesses (Lp=0.8, h = 0.05), (b) Various patch

lengths (E0=1, h=0.05), (c) Various thicknesses, href=0.05 (Lp=0.8, E0=1).
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Fig. 14. The critical temperature, Ycr, corresponding to the ®rst critical membrane force for symmetric deformation vs. the ratio of

coe�cients of thermal expansion, a0, for Clamped supports; (a) Various relative sti�nesses (Lp=0.8, h = 0.05), (b) Various patch

lengths (E0=1, h=0.05), (c) Various thicknesses, href=0.05 (Lp=0.8, E0=1).
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Results of numerical simulations were presented for representative patched plates to elucidate the
characteristic behavior of the class of structures considered, and the results were extended to a
broad range of structures by examining the behavior of the characteristic parameters for a variety
of geometric and material properties. Three types of critical behavior were observed; bifurcation
buckling, `asymptotic buckling', and `sling-shot buckling'. The occurrence and characteristics of
such behavior were seen to be a function of the critical parameters.

To close, the current investigation of patched beam-plates subjected to thermo-mechanical loading
was seen to unveil a rich and varied structural response as well as the factors that control such behavior.
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